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Keywords: Padé–Gegenbauer reconstruction; Gegenbauer polynomials; Gibbs phenomenon; Runge phenomenon
1. Introduction

Gegenbauer reconstruction, developed by Gottlieb et al. [7,6,5,4,10], was developed to overcome the Gibbs
oscillations introduced in a spectral expansion by a discontinuity. Since its appearance, Gegenbauer reconstruc-
tion has found numerous far reaching and diverse applications such as stiff differential equations, hyperbolic
heat transfer, and the improvement in resolution of brain MRIs [2,9,11]. Although we will discuss Gegenbauer
approximation, we approach the topic with the possible impact on Gegenbauer reconstruction in mind.
Recently, a potential problem for Gegenbauer approximations was brought forth. Boyd demonstrated that
for functions with singularities in the complex plane, the Gegenbauer approximation may introduce large oscil-
lations near the boundaries, which he termed ‘‘generalized Runge phenomenon’’. These off-axis singularities are
possibly troublesome for Gegenbauer approximations, leading to complications such as loss of accuracy and
restricted parameters [3]. The purpose of this paper is to offer a method for sidestepping the generalized Runge
phenomenon and the problems associated with it. In [8], an interpolation-based Padé–Jacobi reconstruction
method was proposed for the reduction of oscillations induced by the Gibbs phenomenon. We introduce herein
a new application of the interpolant defined in [8] – the Padé–Gegenbauer interpolant as a postprocessor to the
Gegenbauer expansion. In the case where the Gegenbauer approximation of a function exhibits the generalized
Runge phenomenon, application of the Padé–Gegenbauer postprocessor will suppress the oscillations. Let us
first describe the framework of the problem in greater detail.

A Gegenbauer polynomial Ck
k of degree k satisfies the orthogonality condition
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A function f(x) may be expressed by its Gegenbauer series on domain [�1,1] as
f ðxÞ ¼
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For a fixed Gegenbauer order k and truncation order N the maximum pointwise error of the approximant is
defined as � �
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Essentially, the Gegenbauer reconstruction method for eliminating the Gibbs phenomenon begins with the
partial Fourier sum of a function and re-expands it as a partial sum of Gegenbauer polynomials, with coor-
dinate changes so that the discontinuities occur at x ± 1. By increasing the Gegenbauer order k linearly with
the truncation order N, the reconstruction is increasingly weighted away from the neighborhood of the discon-
tinuity. Due to theory, we concern ourselves with the diagonal limit, k = bN as N!1, of Gegenbauer
approximants as this behavior is important in Gegenbauer reconstruction. For an appropriate choice of b,
it can be shown that the diagonal limit converges [6]. In this work we restrict ourselves to examining the behav-
ior of the Gegenbauer approximants of functions for the following reason. The Fourier approximation of a
function ~f will behave like the function itself except in the case where the number of Fourier coefficients is
very small, of O(10) [3]. The Gegenbauer reconstruction, based on the Fourier approximation ~f , will therefore
exhibit the same behavior as the Gegenbauer approximant. For restoration of exponential convergence, the
Gegenbauer order of the polynomials k must increase linearly with the Gegenbauer truncation order N [5].

Definition 1.1. The diagonal approximation is a sequence of approximations
Eðb;NÞ � EðbN ;NÞ; ð6Þ

where E(bN,N) is given by Eq. (5).

A sequence Eðb;NÞ is generated by increasing the order of truncation N while the Gegenbauer order is deter-
mined by k = bN where b is a positive constant.

Boyd demonstrates numerically in [3] that the Gegenbauer approximation of a function with a singularity on
the imaginary axis may diverge near the endpoints of the interval if the singularity is close enough to the real
axis. Tests showed that this divergence can be so large that a sequence of approximations Eðb;NÞ as defined by
Eq. (6) may actually diverge for functions with poles sufficiently close to the real axis – the diagonal limit tends
to infinity. Boyd rightfully suggests that this phenomenon could be problematic for the use of the Gegenbauer
reconstruction. However the analysis of the behavior of the vertical limit, N is fixed and k!1, hints at a pos-
sible technique to deal with these problems. The vertical limit of the Gegenbauer approximant behaves like a
power series centered around x = 0. Let us outline a proof of this fact which can also be found in [3].

Proposition 1.2 (Vertical limit of Gegenbauer approximation). Suppose that we normalize the Gegenbauer

polynomials Ck
nðxÞ by Ck

nð1Þ such that the normalized polynomial has a maximum value of 1 at x = 1. With this

normalization, the nth Gegenbauer polynomial asymptotes to xn for x 2 [�1,1].

Proof. We can define the normalized polynomials as
Ck
nðxÞ

Ck
nð1Þ
¼
Xn=2

k¼0

Bk
nxn�k:
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Fig. 1.
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We therefore propose the Padé–Gegenbauer interpolant specifically because it is a rational interpolant with a
larger radius of convergence than a power series.

In Section 2 we give a brief introduction to the properties and construction of Padé–Gegenbauer interpo-
lants. Section 3 is devoted to numerical examples illustrating the results of the Padé–Gegenbauer interpola-
tion. We demonstrate the ability of the Padé–Gegenbauer interpolant to reduce or remove the oscillations
caused by the singularity in the imaginary axis and restore the accuracy of the expansion. We close with con-
cluding remarks in Section 4.

2. Padé–Gegenbauer reconstruction

We consider the same test function as Boyd,
f1ðx; zÞ ¼ z2

z2 þ x2
: ð7Þ
As another example we choose the function
f2ðx; zÞ ¼ 1

logðz2 þ x2 þ 1Þ : ð8Þ
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Log of maximum pointwise errors of the sequences Eð1;NÞ ¼ EðN ;NÞ for the function f2(x;z) = 1/log(z2 + x2 + 1) for different
of z and b = 1. As z decreases, the pole moves closer to the real axis and causes divergence of the sequence of approximants.
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This rational function with a non-polynomial denominator is a good test for Padé–Gegenbauer methods
because it does not have an exact Padé approximant. Fig. 1 consists of various sequences for the test function
f2. It shows that for fixed b = 1, the sequence with a pole at i (z = 1) converges, but as the pole moves closer to
the real axis the sequence diverges exponentially. For smaller values of b the singularities must be moved clo-
ser to the origin to observe the same phenomenon-results for f1 are similar and may be found in [3].

As Fig. 1 illustrates, singularities can be devastating for the Gegenbauer reconstruction. We propose the use
of the Padé–Gegenbauer postprocessor as a method to recover accuracy for a function exhibiting this general-
ized Runge phenomenon. The construction of the postprocessor is described in detail in [8] for the Padé–
Legendre case. Below we describe, in brief, the construction of the Padé–Gegenbauer interpolant.

We seek a Padé–Gegenbauer interpolant, SðxÞ, of order (M,L) that interpolates the function f at N + 1
collocation points given by the form
SðxÞ ¼ PðxÞ
QðxÞ ;
where
PðxÞ ¼
XM

i¼0

aiC
k
i ðxÞ; QðxÞ ¼

XL

i¼0

bjC
k
j ðxÞ:
Definition 2.1. Given integers M and L and polynomials P 2 PM , Q 2 PL we call ðP;QÞ a solution to the
(N,M,L) Padé–Gegenbauer interpolation problem of a function f if Q has a constant sign on the domain
[�1,1] i.e.
8x 2 ½�1; 1�; QðxÞ > 0; ð9Þ

and
8u 2 PN ; hQf �P;uiN ¼ 0: ð10Þ

We clarify the interpolation properties of S below.

Remark 2.2 (Interpolation). Given the polynomials ðP;QÞ that are a solution to the Padé–Gegenbauer
interpolation problem, we take u 2 PN in (10) to be ‘i, where ‘i is the Lagrange polynomial based on the
quadrature points xi. This gives the system
8i ¼ 0; . . . ;N : ðP� Qf ÞðxiÞ ¼ 0: ð11Þ

Since QðxiÞ 6¼ 0, the function SðxÞ interpolates f, i.e.
8i ¼ 0; . . . ;N : SðxiÞ ¼ f ðxiÞ: ð12Þ

We must also concern ourselves with the choice of parameters M and L. To ensure uniqueness we require

throughout the rest of the paper that the parameters satisfy the following condition:
M þ L 6 N : ð13Þ

Proof of uniqueness can be found in [8].

In order to formulate the computational system we take ui ¼ Ck
i in Eq. (10) which gives the system
8Ck
n 2 PN ; hQf �P;Ck

niN ¼ 0: ð14Þ

From Eq. (14), we find that the coefficients {ai} and {bj} of the Padé–Gegenbauer expansion must satisfy two
systems,
XL

j¼0

bjhkj ¼ 0; k ¼ M þ 1; . . . ;N ; ð15Þ

XL

j¼0

bjhkj ¼ ak; k ¼ 0; . . . ;M ; ð16Þ
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1
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j ðxiÞxi:
The computation of the coefficients hkj can be computed entirely as matrix products. We require the knowl-
edge of the function value at the appropriate quadrature points, ðxiÞNi¼0 as well as the associated weights ðxiÞNi¼0,
and define the following matrices:
D ¼
Ck

0ðx0Þ � � � Ck
0ðxN Þ

..

. ..
.

Ck
N ðxN Þ � � � Ck

N ðxN Þ

2
664

3
775
and F = diag(u(x0)x0, . . . ,u(xN)xN). The entries hkj can then be computed as
H ¼
h00 � � � h0N

..

. ..
.

hN0 � � � hNN

2
664

3
775 ¼ ðD� F Þ � D0;
Note that Eq. (15) has L equations and L + 1 unknowns, therefore there exists a non-zero solution to the
system. These equations can be solved in more than one way. Either they are solved by finding the null space
of the system using some linear algebra toolbox or one of the unknown coefficients qi can be fixed such that we
have a square system. If we do choose to eliminate one degree of freedom we must choose which coefficient is
fixed such that the resultant square matrix is invertible. For further details on the computation of the Padé–
Gegenbauer interpolant we refer to [8].

3. Numerical tests

We now apply the Padé–Gegenbauer method to the two test functions we have presented. Let us be more
specific about the setting of our tests. We shall begin our examination by requiring that the order of our inter-
polant satisfies the condition
N ¼ M þ L; ð17Þ

and choose to use Gegenbauer Gauss quadrature points for calculation of the Padé–Gegenbauer interpolant.
The function values at the Gegenbauer Gauss points have been obtained by interpolation. This situation is
close to what we would expect if reading a Gegenbauer reconstruction at the quadrature points - some error
is present but not of the same magnitude as near the boundary.

As an example of the Padé–Gegenbauer method, Fig. 2 illustrates the Runge phenomenon observed for the
Gegenbauer expansion of the function f1(x; 2/3) as well as a successful Padé–Gegenbauer interpolant where
accuracy has been restored.

We consider sequences of Padé–Gegenbauer interpolants where the order of the denominator L scales with
the order of the Gegenbauer expansion N, i.e. L = N/2. As the left plot of Fig. 3 illustrates, this choice of the
denominator order L yields a reasonable reduction of the maximal error for all positions of the pole z. On the
right in Fig. 3, we display the L1 error of sequences of Padé–Gegenbauer interpolants for our second test
function, f2. We point out that for the test functions presented, the case where z = 1/4 does not yield highly
accurate results. However, we have shown only one Padé–Gegenbauer interpolant for each function when in
fact there are many more possibilities, especially if we remove the condition of Eq. (17).

If instead we seek the order of the Padé–Gegenbauer interpolant that minimizes the error of the function,
we find that we can achieve very good accuracy for all of the functions, regardless of the pole position. In order
to illustrate the strength of the Padé–Gegenbauer interpolant we will use our knowledge of the exact function
to find the interpolant that minimizes the error. We examine the interpolants that satisfy the looser condition
M þ L 6 N :
Note that the construction of the interpolant was defined without constraints on the parameters M and L.
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Pointwise error for Gegenbauer approximant of f1(x;2/3)
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Fig. 2. On the left we have the pointwise error of the Gegenbauer approximant of order N = 24 to the function f1(x; 2/3). The large error
in the narrow region near the boundaries is the Runge phenomenon. The right figure shows the Padé–Gegenbauer interpolant of order
(12,12) for the same function and shows the suppression of the Runge phenomenon. Both figures are shown on a uniform grid of 200
points.
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Fig. 3. Log of maximum pointwise error of sequences of Padé–Gegenbauer interpolants of the function for various values of z and fixed
M = N/2, L = N/2 with b = 1. Left: f1; right: f2.
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We consider the functions f1 and f2 for the pole positions, z = 1/2,1/4, both leading to divergence of the
Gegenbauer approximants. Equally good results are obtained for the other pole values as well. The top plots
of Fig. 4 show the error of the most accurate interpolants of the function f1. The function f1 has an exact Padé–
Gegenbauer interpolant of order (0,2) which yields extremely accurate results for all values of the pole z. The
plots in Fig. 4 show that the orders of the interpolants hover around this exact order for all values of N and z,
and differ only because of rounding error. The test function f2 was constructed to display the same Runge
behavior as f1 although it does not have an exact Padé–Gegenbauer interpolant. The bottom plots of
Fig. 4 show that the error drops off as N increases. Also, we note that the curves look similar regardless of
the pole position, though the interpolant order (M,L) may be very different for the same truncation order N.
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Of course in these examples knowledge of the exact function is used to determine the orders that give the
best accuracy, which is not a realistic situation for computational problems. However the strength of the
method lies in the ease and speed of computing many interpolants or every possible one. Choosing the ‘‘best’’
interpolant is thereafter user-defined. General guidelines and strategies for choosing the order of the Padé–
Gegenbauer interpolant are found in [8].

4. Concluding remarks

In this work we have proposed a rational interpolant as a means of reducing the generalized Runge phe-
nomenon observed in the Gegenbauer approximants of functions with off-axis singularities. This method
requires the knowledge of the function values at Gegenbauer Gauss quadrature points but does not require
that the user know the location of the singularities of the function. There is also no need to force b to be small
as shown in the examples above. These properties, along with an efficient algorithm for computing the inter-
polants as laid out in [8] make the Padé–Gegenbauer postprocessor method as well suited for engineering and
science applications as for exact functions. This does not mean that this Gegenbauer Runge phenomenon is no
longer problematic, but rather that it may often be possible to circumvent the problem and regain accuracy of
the expansion with minimal postprocessing.
0 5 10 15 20 25 30 35
10

10

10

10
L

∞
f
1
(x;1/2) in the diagonal limit: λ=N

order λ / truncation N

E
rr

or

(0,2)

(0,4)

(0,2)

(0,3) (2,2)

(1,2)

(2,2)

(0,2)

0 5 10 15 20 25 30 35
10

10

10

10
L

∞
f
1
(x;1/4) in the diagonal limit: λ=N

order λ / truncation N

E
rr

or

(0,2)

(0,3)

(3,2)

(0,2)

(1,2)

(0,2)

(1,2)

(0,2)

0 5 10 15 20 25 30 35
10

10

10

10

10

10

10
0

10
2

order λ / truncation N

E
rr

or

L
∞

f
2
(x;1/2) in the diagonal limit: λ=N

(10,6)

(4,2)

(8,2)

(8,4)

(9,5)

(8,6)
(10,6)

(1,2)

0 5 10 15 20 25 30 35
10

10

10

10

10

10

10
0

10
2

L
∞

f
2
(x;1/4) in the diagonal limit: λ=N

order λ / truncation N

E
rr

or

(10,6)

(4,2)

(8,2)

(10,3)

(13,3)

(10,6)
(10,6)

(0,3)

Fig. 4. L1 error of sequences of Padé–Gegenbauer interpolants for various values of z of both functions and b = 1. The interpolant of
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